Cavity quantum electrodynamics with semiconductor quantum dots: Role of phonon-assisted cavity feeding
نویسنده
چکیده
For a semiconductor quantum dot strongly coupled to a microcavity, we theoretically investigate phononassisted transitions from the exciton to a cavity photon, where the energy mismatch is compensated by phonon emission or absorption. By means of a Schrieffer-Wolff transformation we derive an effective Hamiltonian, which describes the combined effect of exciton-cavity and exciton-phonon couplings, and compute the scattering rates within a Fermi-golden-rule approach. The results of this approach are compared with those of a recently reported description scheme based on the independent boson model U. Hohenester et al., Phys. Rev. B 80, 201311 R 2009 and a numerical density-matrix approach. All description schemes are shown to give very similar results. This demonstrates that phonon-assisted cavity feeding can be described in terms of a simple scattering process and does not require a non-Markovian treatment as suggested elsewhere. We present results for the spontaneous emission lifetime of a quantum dot initially populated with a single exciton or biexciton and for the spectral properties of an optically driven dot-cavity system operating in the strongcoupling regime. Our results demonstrate that phonon-assisted feeding plays a dominant role for strongly coupled dot-cavity systems when the detuning is of the order of a few millielectron volts.
منابع مشابه
Calculation of Kolmogorov Entropy in Cavity Quantum Electrodynamics
In this paper Kolomogorov entropy of a simulated cavity quantum electrodynamics in a multi-partite system consisting of eight quantum dots in interaction with one cavity mode has been estimated. It has been shown that the Kolmogorov Entropy monotonically increases with the increasing coupling strength, which is a sufficient condition for chaotic behavior under ultrastrong coupling regime. The a...
متن کاملEmission spectrum of a quantum dot embedded in a nanocavity
We model the emission spectrum of a quantum dot embedded in a (e.g. photonic crystal) nanocavity, using a semi-classical approach to describe the matter-field interaction. We start from the simple model of a quantum dot as a two-level system, and recover the result expected from cavity quantum electrodynamics. Then, we study the influence of electron-acoustic-phonons interaction. We show that t...
متن کاملEnhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for sur...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملBichromatic driving of a solid-state cavity quantum electrodynamics system
We theoretically study the bichromatic driving of a solid-state cavity quantum electrodynamics (QED) system as a means of probing cavity dressed state transitions and observing the coherent interaction between the system and the light field. We show that this method can enable the observation of the higher order cavity dressed states, supersplitting and ac-Stark shift in a solid-state system co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010